<u>Thalassaemias</u>

Definition:

Family of inherited haemoglobinopathies resulting from decreased synthesis of α or β globin chains.

Clinically they r divided into :

1-Thalassamia major: (Transfusion dependent)

A- Hydrops foetalis

B- β Thalas. Major

2-Thalassamia intermedia:

Ch. by moderate an. usually e' splenomegaly & iron overload.

3-Thalassamia minor: symptomless carrier.

<u>β Thalassamia</u>

Def:

Severe H.A in infancy & early childhood e' certain characteristic features:

- MHA
- Anisocytosis, poikilocytosis, target cs.
- Splenomegaly
- Mongoloid facies
- serum iron
- Patient usually dies from cardiac arrhythmias

Clinical classification:

Thalassamia major

- " intermedia
- ,, minor

Genetic classification:

 β = normal gene β + = partial synthesis of β chain β o = complete absence of β chain

Genetic expression may be:

1-βοβο : thalas. Major			
Hb: all r F & A2 (no Hb A)			
2- β + β + : thalas. major or intermedia			
variable amount of Hb A, F & A2			

- **3-β+βo :** thalas. major or intermedia variable amount of Hb A, F & A2
- **4-ββo**: thatas. minor or intermedia

Hb A, F & Hb A2

5-ββ+: thalas. minor or intermedia

just **†**Hb A2

Classification & Terminology of Beta Thalassemia

•	Normal	β/β
•	Minor	eta/eta^0 eta/eta^+
•	Intermedia	eta^0/eta^+ eta^+/eta^+
•	Major	eta^0/eta^0 eta^+/eta^+
		$eta^0\!/eta^+$

Molecular basis of β thalassamia

The defect mainly is Quantitative : due to amount of m-RNA. Most of β thal. syndromes r caused by mutations affecting gene regulation or expression rather than gene deletion (unlike α thalas.)

N.B: causes:

- **1- Deletion:**
- 2- Non deletion:
- A- mutation of m-RNA transcription
- B- ", " processing
- C- ", ", translation

I- Deletion: βo Rare

Deletion of a part or whole of 3' or 5' end of β gene (mainly in α thalassamia not β).

II- Non deletion = Mutation:

A- Mutations of transcription:

1-promotor region mutation: β+

 $\downarrow \text{ m RNA transcription} \rightarrow \forall \text{ amount of globin synthesis} \rightarrow \\ \downarrow \text{ synthesis of } \beta \text{ chain } = \beta +$

2- chain terminator mutation: βo

This leads to : mRNA is incapable of being translated into full length globin chains resulting in β o phenotype.

B- Mutations of processing:

Mutations affecting splicing, capping or polyadenylation \rightarrow unstable m-RNA \rightarrow \downarrow amount of globin synthesis \rightarrow \downarrow synthesis of β chain

1- Splice junction mutations : βο

- Point mutation involving splicing sites result in abnormal splicing.
- The m-RNA produced is useless as a messenger for β globin synthesis $\longrightarrow \beta o$

2- Mutations of consensus sequences : β +

- Mutations involving consensus seq. (boundaries surrounding splice junction) results in formation of cryptic donor site.
- These cryptic sites resemble N splice sites but r not recognized unless N sites r altered.
- These mutations leads to \oint splicing not abolish it $\longrightarrow \beta +$

3-Mutations creating new splicing sites: β + or β o

- Nucleotide substitution e'in introns results in formation of new splice sites, despite of presence of functioning N splice sites.
- The new splice sites compete e' N splice site $\rightarrow \beta + \text{ or } \beta 0$

4- Activation of cryptic donor site : β+

- Exons contain cryptic sites e' a nucleotide sequence resembling N seq.
- Mutations of these cryptic sites lead to their activation, competition between abnormal new splice seq. & N splice seq \rightarrow mild β +

5-Mutations of polyadenylation : β +

Mutation of AATAAA seq. at 3' end \rightarrow transcription continue elongated m-RNA (unstable) $\rightarrow \beta$ +

6- Mutations at cap site : β +

Substitution of C for A in 1st position may \downarrow transcription or slow the 5' capping $\rightarrow \downarrow$ m-RNA stability $\rightarrow \beta$ +

<u>C- Mutations causing abnormal translation of m-RNA:</u>

1- Nonsense mutation : βο

Point mutation (single aa substitution) creation of a stop codon \rightarrow prevent translation of m-RNA \rightarrow premature stop codon $\rightarrow \beta o$

2- Frame shift mutation:

1,2,4 base insertion or deletion \rightarrow disturbance of N reading frame \rightarrow creation of termination codon

Pathophysiology

Thalassamia major (Cooley's anaemia)

Severe anaemia manifested early in life e' splenomegaly & bony deformaties

Genetic expression:

βo/βo β+/β+ βo/β+ δβ lepore / δβ lepore $βo/E \rightarrow$ (Hb E → thalassamic Hb as it is

abnormal Hb & \downarrow amount

C/P:

of chronic H.A

Lab findings:

1- Evidences : 3

2-CBC:

- MHA
- Target cells, macrocytes (**†**etics)
- Anisocytosis, poikilocytosis
- Normos
- basophilic stippling, capot rings
- retics put doesn't correlate e' degree of anemia (ineff.eryth)
- WBCs & platelets: N

3-BM:

Hypercellular, erythroid hyperplasia

Iron stain:

↑ iron stores, ↑ sideroblasts.

4- Evidence of ineffective erythropoiesis

5-Special tests:

A- Hb electrophoresis:

† Hb F & A2

Hb A (variable acc. to genetic variant & molecular basis)

B- Osmotic fragility: ↓ due to ↑ retics w' resist lysis C- Ferrokinetics:

Ineffective erythropoiesis

D- Gene study by PCR:

For prenatal diagnosis.

Thalassemia major

HB ELECTROPHORESIS

Thalassemia Intermedia

Milder than thal. major but more severe than asymptomatic thal. Trait

Genetic expression:

 $\begin{array}{c} \beta + /\beta + \\ \beta /\beta o \\ \beta o / (\delta \beta) o \\ \beta + / (\delta \beta) o \\ (\delta \beta) o / (\delta \beta) o \\ double heterozygous lepore: \\ \beta + / \delta \beta lepore \\ \beta o / \delta \beta lepore \\ Coinheritance of a thalas. (\downarrow a chain) \\ Hb H (ao/a+) \end{array}$

C/P:

Varies from:

1- severe:

- Patient presents e' anaemia later than thal. Major
- Hb 6 g/dl e'out transfusion
- Growth retardation
- Skeletal deformaties
- Splenomegaly
- Leg ulcers

2- completely asymptomatic until adult life & transfusion independent

- e' Hb level 10-12 g/dl
- 3- varieties of intermediate severity

Lab diagnosis:

- same as thal.minor
- Hb A : 20-40%

<u>Thalassaemia minor</u>

Pathogenesis:

 $\downarrow \beta$ or $\downarrow \delta\beta$ synthesis

Genetic expression:

- $\beta/\beta+$
- $\beta/\beta o$

 $\beta/(\delta\beta)o$

 $\beta/\delta\beta$ lepore

Hereditary persistence of fetal Hb (HPFH)

 α o thalas. trait

 $\alpha_{\scriptscriptstyle +}$ thalas. Trait

C/P:

Asymptomatic, discovered accidently

Lab :

- Anaemia is mild or absent, but \downarrow MCV, \downarrow MCH
- RBCs:
- Hypochromia, target cs, basophilic stippling
- WBCs & plat: N
- chemistry:
- firon or ferritin
- Hb E/P:
- † Hb A2 & F

D.D:

Iron def. an. (MHA)

	Thalassamia minor	Iron def. anaemia
Serum iron	↑	
Serum ferritin		↓ ↓
Iron stores		Absent
sideroblasts		
Hb A2		+

Treatment for Beta Thalassemia

- **Trait** no treatment required
- Intermedia
- Major (Cooley anemia)
 - Regular folate supplementation
 - **RBC transfusion** (Splenectomy may decrease need

for transfusions)

- to maintain [Hgb] ~9-10g/dL
- Blood transfusions → iron accumulation → iron overload
- Iron chelators (disferroxamin)
- Bone marrow transplantation (BMT)

-BMT has been attempted from donors with matching alleles.

• Gene therapy—the future